Vector equation of a line with cross product	where \mathbf{a} is the position vector of a point the line passes through \mathbf{b} is the direction vector

Shortest distance between skew	
lines	
$l_{1}: \mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$	
$l_{2}: \mathbf{r}=\mathbf{c}+\mu \mathbf{d}$	$\left\|\frac{(\mathbf{a}-\mathbf{c}) \cdot(\mathbf{b} \times \mathbf{d})}{\|\mathbf{b} \times \mathbf{d}\|}\right\|$

Simpson's rule for	$\approx \frac{1}{3} h\left\{\left(y_{0}+y_{2 n}\right)\right.$
	$+4\left(y_{1}+\ldots+y_{2 n-1}\right)$
$\int_{a}^{b} y \mathrm{~d} x$	$\left.+2\left(y_{2}+\ldots+y_{2 n-2}\right)\right\}$
	where $h=\frac{b-a}{2 n}$

Complex loci $\|z-a\|=\|z-b\|$	Perpendicular bisector of the line joining the com- plex numbers a and b

Complex loci $\arg (z-a)=\beta$	Half line from the complex number a at an angle of β to the real axis

	The angle that the line makes wirection cosines of the line $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$, where $\mathbf{b}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ Angle with the x-axis, α $\cos \alpha=\frac{x}{\|b\|}$ Angle with the y-axis, β $\cos \beta=\frac{y}{\|b\|}$ Angle with the z-axis, γ $\cos \gamma=\frac{z}{\|b\|}$

Polar graph $r=p \sec (\alpha-\theta)$	Straight line Convert into $y=m x+c$ using the addition formula for cosine

Polar graph $r=p+q \cos \theta$ $q \leqslant p<2 q$	Concave curve "dimple" shaped limaçon

