Identify all the equations which are equivalent to:

$$
x^{2}+3 x-5=0
$$

$$
\begin{array}{l|l}
\hline x^{2}+3 x=5 & x^{2}+4 x-5=x \\
\hline
\end{array}
$$

$x^{2}+3 x=5$	$x^{2}+4 x-5=x$
$x^{2}+2 x-5=x$	$x^{2}-5=3 x$
$x^{2}=5+3 x$	$x^{2}=5-3 x$
$x^{2}+2 x+1=-x+6$	$x^{2}+2 x+1=x+6$
$x^{2}-4=3 x-1$	$2 x^{2}+6 x-10=0$
$2 x+1=-x-6$	$x^{2}-1=-3 x+4$

Identify all the graphs which can be used to solve

$$
x^{2}+3 x-5=0
$$

All these graphs can be used to solve

$$
x^{2}+3 x-5=0
$$

work out the equation of the straight line

The graphs of these two quadratics can be used to solve

$$
x^{2}+3 x-5=0
$$

The red quadratic is of the form $x^{2}+b x+c$

(1)	Find b and c.
(2)	The blue quadratic is of the form $-x^{2}+d x+e$. Find d and e.

The graphs of these two quadratics can be used to solve

$$
x^{2}+3 x-5=0
$$

The red quadratic is of the form $a x^{2}+b x+c$
(1) Find the equation of the red quadratic.
(2) The blue quadratic is of the form $-x^{2}+d x+e$.

Find d and e .

Identify all the equations which are equivalent to:

$$
x^{2}+3 x-5=0
$$

$x^{2}+3 x=5$	$x^{2}+4 x-5=x$
$x^{2}+3 x-5=0$	$x^{2}+3 x-5=0$
$x^{2}+2 x-5=x$	$x^{2}-5=3 x$
$x^{2}+x-5=0$	$x^{2}-3 x-5=0$
$x^{2}=5+3 x$	$x^{2}=5-3 x$
$x^{2}-3 x-5=0$	$x^{2}+3 x-5=0$
$x^{2}+2 x+1=-x+6$	$x^{2}+2 x+1=x+6$
$x^{2}+3 x-5=0$	$x^{2}+x-5=0$
$x^{2}+2 x+1=-x-6$	$x^{2}-1=-3 x+4$
$x^{2}+3 x+7=0$	$x^{2}+3 x-5=0$
$x^{2}-4=3 x-1$	$x^{2}+3 x-5=0$
$3 x-3=0$	

Identify all the graphs which can be used to solve

$$
x^{2}+3 x-5=0
$$

$$
x^{2}+3 x=5
$$

$$
x^{2}+3 x-5=0
$$

All these graphs can be used to solve

$$
x^{2}+3 x-5=0
$$

workout the equation of the straight line

The graphs of these two quadratics can be used to solve

$$
x^{2}+3 x-5=0
$$

The red quadratic is of the form $x^{2}+b x+c$

(1) | Find b and c. |
| :--- |
| $(x+5)(x+1)=x^{2}+6 x+5$ |$\quad b=6, c=5$

The graphs of these two quadratics can be used to solve

$$
x^{2}+3 x-5=0
$$

The red quadratic is of the form $a x^{2}+b x+c$
(1) \(\left.\begin{array}{l}Find the equation of the red quadratic. \\
\begin{array}{r}a(x+3)(x-1)=a\left(x^{2}+2 x-3\right) \\

(0,-6) \Rightarrow a=2\end{array} \quad 2 x^{2}+4 x-6 \quad b=4, c=-6\end{array}\right]\)\begin{tabular}{l}
The blue quadratic is of the form $-x^{2}+d x+e$. \\

Find d and e.
$x^{2}+3 x-5=0$
$3 x^{2}+9 x-15=0$
$2 x^{2}+9 x-15=-x^{2}$
$2 x^{2}+4 x-15=-x^{2}+5 x$
$2 x^{2}+4 x-6=-x^{2}+5 x+9$

\hline
\end{tabular}

