

TASK: In each of these triangles label the opposite, adjacent, hypotenuse and the angle θ

adjacent

adjacent

TASK: Use Pythagoras' Theorem to complete this table of side ratios

$\begin{aligned} & \text { Angle (} \theta \text {) } \\ & \text { rounded to 1d.p } \end{aligned}$	$\frac{\text { opp }}{\text { hyp }}$	$\frac{\text { adj }}{\text { hyp }}$	$\frac{\text { opp }}{\text { adj }}$
$8.8{ }^{\circ}$	$\frac{13}{85}$		
$10.4{ }^{\circ}$	$\frac{11}{61}$		
$11.4{ }^{\circ}$		$\frac{99}{101}$	
12.7°		$\frac{40}{41}$	
$14.3{ }^{\circ}$			$\frac{16}{63}$
$16.3{ }^{\circ}$			$\frac{7}{24}$
18.9°	$\frac{12}{37}$		
$22.6{ }^{\circ}$	$\frac{5}{13}$		
25.1°		$\frac{77}{85}$	
26.0°		$\frac{80}{89}$	
28.1°			$\frac{8}{15}$
30°			$\frac{\sqrt{3}}{3}$
30.5°	$\frac{33}{65}$		
31.9°	$\frac{28}{53}$		
$33.4{ }^{\circ}$		$\frac{91}{109}$	
36.9°		$\frac{4}{5}$	
41.1°			$\frac{48}{55}$
42.1°			$\frac{65}{72}$
$43.6{ }^{\circ}$	$\frac{20}{29}$		
45°	$\frac{\sqrt{2}}{2}$		

TABLE OF SIDE RATIOS

$\begin{aligned} & \text { Angle }(\theta) \\ & \text { rounded to 1d.p } \end{aligned}$	$\frac{\text { opp }}{\text { hyp }}$	$\frac{\text { adj }}{\text { hyp }}$	$\frac{\text { opp }}{\text { adj }}$
$8.8{ }^{\circ}$	$\frac{13}{85}$	$\frac{84}{85}$	$\frac{13}{84}$
$10.4{ }^{\circ}$	$\frac{11}{61}$	$\frac{60}{61}$	$\frac{11}{60}$
$11.4{ }^{\circ}$	$\frac{20}{101}$	$\frac{99}{101}$	$\frac{20}{99}$
12.7°	$\frac{9}{41}$	$\frac{40}{41}$	$\frac{9}{40}$
$14.3{ }^{\circ}$	$\frac{16}{65}$	$\frac{63}{65}$	$\frac{16}{63}$
16.3°	$\frac{7}{25}$	$\frac{24}{25}$	$\frac{7}{24}$
18.9°	$\frac{12}{37}$	$\frac{35}{37}$	$\frac{12}{35}$
$22.6{ }^{\circ}$	$\frac{5}{13}$	$\frac{12}{13}$	$\frac{5}{12}$
25.1°	$\frac{36}{85}$	$\frac{77}{85}$	$\frac{36}{77}$
26.0°	$\frac{39}{89}$	$\frac{80}{89}$	$\frac{39}{80}$
28.1°	$\frac{8}{17}$	$\frac{15}{17}$	$\frac{8}{15}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
30.5°	$\frac{33}{65}$	$\frac{56}{65}$	$\frac{33}{56}$
31.9°	$\frac{28}{53}$	$\frac{45}{53}$	$\frac{28}{45}$
$33.4{ }^{\circ}$	$\frac{60}{109}$	$\frac{91}{109}$	$\frac{60}{91}$
36.9°	$\frac{3}{5}$	$\frac{4}{5}$	$\frac{3}{4}$
41.1°	$\frac{48}{73}$	$\frac{55}{73}$	$\frac{48}{55}$
42.1°	$\frac{65}{97}$	$\frac{72}{97}$	$\frac{65}{72}$
$43.6{ }^{\circ}$	$\frac{20}{29}$	$\frac{21}{29}$	$\frac{20}{21}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1

TASK: Using the table of side ratios, find the lettered sides and angles.

1

3

14.6 cm

(4)

6

9

TASK 1: Using the table of side ratios, find the lettered sides and angles.

1

3

5

4

(6)

8

10

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}
$$

$$
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

$\sin 35^{\circ}=0.5736$

Veronica has answered this question correctly

Find the length of x
$\sin 40^{\circ}=\frac{17}{x}$
$x\left(\sin 40^{\circ}\right)=17$
$x=\frac{17}{\sin 40^{\circ}}$
$=26.4 \mathrm{~cm}$

WORKED EXAMPLE - TRIGONOMETRY - FINDING LENGTHS

Study the solution carefully and answer these questions.
(1) How does Veronica know to use the sine ratio?
(2) Veronica's friend types $17\left(\sin 40^{\circ}\right)$ into their calculator and gets the answer:

$$
10.9 \mathrm{~cm}
$$

Explain how they can tell they have made a mistake.
(3) What if the question was:

(a) Which trigonometric ratio would you use?
(b) What would your working look like?

Jordan has answered this question correctly
Find the length of x

$$
\begin{aligned}
\tan \theta & =\frac{3}{8} \\
\theta & =\tan ^{-1}\left(\frac{3}{8}\right) \\
\theta & =20.6^{\circ}
\end{aligned}
$$

Study the solution carefully and answer these questions.
(1) How does Jordan know to use the tangent ratio?
(2) Jordan's friend has their calculator in the wrong mode. They get an answer of 0.359 .
Explain how they can tell they have a wrong answer.
(3) (a) What mode should their calculator be in?
(b) How can they check this?
(c) What keys should they press to put it in the correct mode?
(4) What if the question was

7 cm

What would your first line of working look like?

$$
\sin \theta=\frac{5}{13}
$$

Label the triangle and find all the missing sides and angles

